THE EFFECT OF STRAIN ON GRAINS AND GRAIN BOUNDARIES IN YBa2Cu3O7−δ COATED CONDUCTORS (POSTPRINT)

نویسندگان

  • D. C. van der Laan
  • P. N. Barnes
چکیده

The role of grains and grain boundaries in producing reversible strain effects on the transport current critical current density (Jc) of YBa2Cu3O7−δ (YBCO) coated conductors that are produced with metal–organic deposition (MOD) was investigated. The strain (ε) dependence of Jc for full-width coated conductors is compared with that for samples in which the current transport was limited to a few or single grain boundaries by cutting narrow tracks with a laser or focused ion beam, as well as with thin films deposited on bicrystalline SrTiO3 substrates by use of pulsed-laser deposition (PLD). Our results show that the dependences of Jc on ε for the grains and for the grain boundaries from the two kinds of YBCO samples can be expressed by the same function, however with a greater effective tensile strain at the grain boundaries than in the grains. The really striking result is that the grain boundary strain is 5–10 times higher for grain boundaries of in situ PLD grown bicrystals as compared to the aperiodic, meandered, nonplanar grain boundaries that develop in ex situ grown MOD-YBCO in the coated conductor of this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain Size Effect on the Hot Deformation Processing Map of AISI 304 Austenitic Stainless Steel

In this study, the hot deformation processing map of AISI 304 austenitic stainless steel in two initial grain sizes of 15 and 40 μm was investigated. For this purpose, cylindrical samples were used in the hot compression test at the temperature range of 950-1100 °C and the strain rate of 0.005-0.5% s-1. At first, the relationship between the peak stress and Zener-Hollomon parameter w...

متن کامل

Effect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process

The effect of pre-existing nano sized precipitates on the mechanisms and rate of grain refinement has been investigated during the severe plastic deformation. A binary Al–0.2Sc alloy, containing coherent Al3Sc particles, of 3.62 nm in diameter has been deformed by accumulative roll bonding up to 10 cycles. The resulting deformed structures were quantitatively analyzed using electron backscatter...

متن کامل

Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials

Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...

متن کامل

Nanotwins Formation in Accumulative Roll-Bonded Brass

Accumulative roll-bonding (ARB) is a severe plastic deformation process that is using rolling to produce ultrafine grains in coarse grained metallic materials. In this study, ARB has been applied on 70/30 brass up to 6 cycles at ambient temperature and non-lubricated conditions to apply a true strain up to 4.8 Von Mises strain. Microstructures of ARBed brass samples were characterized by scanni...

متن کامل

Recrystallization texture during ECAP processing of ultrafine/nano grained magnesium alloy

An ultrafine/nano grained AZ31 magnesium alloy was produced through four-pass ECAP processing. TEM microscopy indicated that recrystallized regions included nano grains of 75 nm. Pole figures showed that a fiber basal texture with two-pole peaks was developed after four passes, where a basal pole peak lies parallel to the extrusion direction (ED) and the other ~20° away from the transverse dire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012